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Scheduling loop iterations

• OpenMP provides different algorithms for assigning loop 
iterations to threads

• This is specified via the schedule() clause of the worksharing 
construct

!$omp do schedule(static) 
do i=1,n 

a(i) = ....
end do 

#pragma omp for \
schedule(static)
for (i = 0; i < N; ++i)

a[i] = ....
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Loop worksharing constructs:
The schedule clause

• The schedule clause affects how loop iterations are mapped onto threads
– schedule( static[,chunk])

– Deal-out blocks of iterations of size “chunk” to each thread

– Pre-determined and predictable by the programmer

– When chunk=1 you get round-robin (or cyclic) scheduling
– schedule( dynamic[,chunk])

– Each thread grabs “chunk” iterations off a queue until all iterations have 
been handled

– schedule( guided[,chunk])

– Threads dynamically grab blocks of iterations. The size of the block starts 
large and shrinks down to size “chunk” as the calculation proceeds

– schedule( runtime)

– Schedule  and chunk size taken from the OMP_SCHEDULE environment 
variable (or the runtime library)

– schedule( auto)

– Schedule is left up to the runtime to choose (does not have to be any of the 
above)
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Loops (cont.)

• Use schedule( runtime) for more flexibility
– allow implementations to implement their own schedule kinds 
– can get/set it with library routines

omp_set_schedule()
omp_get_schedule()

• Schedule kind auto gives full freedom to the runtime to 
determine the scheduling of iterations to threads. 

• NOTE: C++ random access iterators are allowed as loop 
control variables in parallel loops



Choosing the “right” schedule clause

• The goal of loop scheduling is to balance the work 
assigned to each thread in the team

• Many factors interact, so sometime experimentation is 
necessary

• Triangular loop nests usually are better with (static,N) or 
(dynamic,N) rather than (static)

• It may help to arrange your loop so the iterations with the 
largest execution time are assigned first
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Barrier: Necessary across adjacent loops?

• OpenMP guarantees that this works … i.e. that the same 
schedule is used in the two loops

• You must ensure that all data accesses to the same location 
are aligned to the same iteration

!$omp do schedule(static) 
do i=1,n 

a(i) = ....
end do 
!$omp end do nowait
!$omp do schedule(static) 
do i=1,n
.... = a(i) 

end do 

#pragma omp for \
schedule(static) nowait
for (i = 0; i < N; ++i)

a[i] = ....

#pragma omp for \
schedule(static)
for (i = 0; i < N; ++i)

.... = a[i]
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#pragma omp parallel for collapse(2)
for (int i=0; i<N; i++) {

for (int j=0; j<M; j++) {
.....

} 
}
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Nested loops

• Will form a single loop of length NxM and then parallelize 
that.

• Useful if N is O(no. of threads) so parallelizing the outer loop 
may complicate balancing the load.

Number of loops 
to be 
parallelized, 
counting from 
the outside

Number of loops 
to be 
parallelized, 
counting from 
the outside

� For perfectly nested rectangular loops we can paral lelize 
multiple loops in the nest with the collapse clause : 



� Allows parallel regions to be contained in each other

� Often done dynamically by having parallel regions in different 
functions

� Total number of threads created is the *product* of the 
number of threads in the teams at each level

� Requires: OMP_NESTED=true or omp_set_nested(1) 
otherwise the inner parallel region will be executed by a team 
of one thread (may happen anyway)

� Use omp_set_num_thread(n) or the num_threads() clause
� Multiple levels of nesting team sizes can be defined via the 

OMP_NUM_THREADS environment variable
�setenv OMP_NUM_THREADS 4,2

Nested parallelism



� The OpenMP runtime organizes threads in a pool.

Nested parallelism
(illustrated)
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Arbitrary tasks

• Counted loops are often a natural means of organizing the 
computation in a program

• But sometimes you need the ability to partition arbitrary 
computation between the threads

• Or you may need the ability to parallelize more than 
“counted loops”, such as “while loops” or computations 
expressed as “recursive function calls”

13
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Basic OpenMP: 
Sections worksharing construct

• The Sections worksharing construct gives a different 
structured block to each thread.  

#pragma omp parallel
{

#pragma omp sections
{
#pragma omp section

X_calculation();
#pragma omp section

y_calculation();
#pragma omp section

z_calculation();
}

}

By default, there is an implicit barrier at the end of the “omp
sections”.  Use the “nowait” clause to turn off the barrier.



Combining nesting and sections

• Creating nested activity is quite common
–Modular programming creates abstraction 

boundaries

• Sections allow arbitrary work units but are 
not composable

• Nested parallel regions often cause 
unexpected results
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Tasking in OpenMP combines the best of these two ideas



� Each encountering thread/task creates a new task
�Code and data is being packaged up
�Tasks can be nested

�Into another task directive
�Into a Worksharing construct

� Data scoping clauses:
�shared (list)
�private (list) firstprivate (list)
�default (shared | none)

The OpenMP task construct
C/C++

#pragma omp task [clause]
... structured block ...

Fortran

!$omp task [clause]
... structured block ...
!$omp end task



Tasks have more flexibility
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void walk_list( node head ) {
#pragma omp parallel
{

#pragma omp single
{

node  p = head;
while (p) {

#pragma omp task
{

process( p );
}
p = p−>next;

}
}

}
}



� Lets solve Sudoku puzzles with brute multi-core search

(1) Find an empty field

(2) Insert a number

(3) Check Sudoku

(4 a) If invalid:
Delete number,
Insert next number

(4 b) If valid:
Go to next field

Sudoko for lazy computer scientists



� This parallel algorithm finds all valid solutions

(1) Search an empty field

(2) Insert a number

(3) Check Sudoku

(4 a) If invalid:
Delete number,
Insert next number

(4 b) If valid:
Go to next field

Parallel brute -force sudoku (1/3)

#pragma omp task
needs to work on a new
copy of the Sudoku board

first call contained in a
#pragma omp parallel
#pragma omp single
such that one tasks starts
the execution of the
algorithm

#pragma omp taskwait
wait for all child tasks



� OpenMP parallel region creates a team of threads
#pragma omp parallel

{

#pragma omp single

solve_parallel(0, 0, sudoku2,false);

} // end omp parallel

�Single construct: One thread enters the execution of
solve_parallel

�the other threads wait at the end of the single …
�… and are ready to pick up threads „from the work queue“

Parallel brute -force sudoku (2/3)



� The actual implementation
for (int i = 1; i <= sudoku->getFieldSize(); i++) {

if (!sudoku->check(x, y, i)) {
#pragma omp task firstprivate(i,x,y,sudoku)
{

// create from copy constructor
CSudokuBoard new_sudoku(*sudoku);
new_sudoku.set(y, x, i);
if (solve_parallel(x+1, y, &new_sudoku)) {

new_sudoku.printBoard();
}

} // end omp task
}

}

#pragma omp taskwait

Parallel brute -force sudoku (3/3)

#pragma omp
taskwait
wait for all child tasks

#pragma omp task
needs to work on a new
copy of the Sudoku 
board



Performance evaluation
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#threads

Sudoku on 2x Intel® Xeon® E5-2650 @2.0 GHz

Intel C++ 13.1, scatter binding
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Task Sychronization



� OpenMP barrier (implicit or explicit)
�All tasks created by any thread of the current Team are

guaranteed to be completed at barrier exit

� Task barrier: taskwait

�Encountering Task suspends until child tasks are
complete
�Only child tasks, not their descendants!

barrier and taskwait constructs

C/C++

#pragma omp barrier

C/C++

#pragma omp taskwait



Tasking in Detail



� Managing the data environment is required in OpenMP

� Scoping in OpenMP: Dividing variables in shared and 
private:
�private-list and shared-list on parallel region
�private-list and shared-list on worksharing constructs
�General default is shared, firstprivate for tasks.
�Loop control variables on for-constructs are private
�Non-static variables local to parallel regions are private
�private: A new uninitialized instance is created for each thread

�firstprivate: Initialization with Master‘s value / value captured at task
creation

�lastprivate: Value of last loop iteration is written back to master

�Static variables are shared

General OpenMP scoping rules



� Some rules from Parallel Regions apply:
�Static and Global variables are shared
�Automatic Storage (local) variables are private

� If shared scoping is not inherited:
�Orphaned task variables are firstprivate by default!
�Non-Orphaned task variables inherit the shared attribute!
→ Variables are firstprivate unless shared in the 

enclosing context

Tasks in OpenMP: Data scoping



Data scoping example (1/7)
int a;

void foo()

{

int b, c;

#pragma omp parallel shared(b)

#pragma omp parallel private(b)

{

int d;

#pragma omp task

{

int e;

// Scope of a:

// Scope of b:

// Scope of c:

// Scope of d:

// Scope of e:

} } }



Data scoping example (2/7)
int a;

void foo()

{

int b, c;

#pragma omp parallel shared(b)

#pragma omp parallel private(b)

{

int d;

#pragma omp task

{

int e;

// Scope of a: shared

// Scope of b:

// Scope of c:

// Scope of d:

// Scope of e:

} } }



Data scoping example (3/7)
int a;

void foo()

{

int b, c;

#pragma omp parallel shared(b)

#pragma omp parallel private(b)

{

int d;

#pragma omp task

{

int e;

// Scope of a: shared

// Scope of b: firstprivate

// Scope of c:

// Scope of d:

// Scope of e:

} } }



Data scoping example (4/7)
int a;

void foo()

{

int b, c;

#pragma omp parallel shared(b)

#pragma omp parallel private(b)

{

int d;

#pragma omp task

{

int e;

// Scope of a: shared

// Scope of b: firstprivate

// Scope of c: shared

// Scope of d:

// Scope of e:

} } }



Data scoping example (5/7)
int a;

void foo()

{

int b, c;

#pragma omp parallel shared(b)

#pragma omp parallel private(b)

{

int d;

#pragma omp task

{

int e;

// Scope of a: shared

// Scope of b: firstprivate

// Scope of c: shared

// Scope of d: firstprivate

// Scope of e:

} } }



Data scoping example (6/7)
int a;

void foo()

{

int b, c;

#pragma omp parallel shared(b)

#pragma omp parallel private(b)

{

int d;

#pragma omp task

{

int e;

// Scope of a: shared

// Scope of b: firstprivate

// Scope of c: shared

// Scope of d: firstprivate

// Scope of e: private

} } }



Data scoping example (7/7)
int a;

void foo()

{

int b, c;

#pragma omp parallel shared(b)

#pragma omp parallel private(b)

{

int d;

#pragma omp task

{

int e;

// Scope of a: shared

// Scope of b: firstprivate

// Scope of c: shared

// Scope of d: firstprivate

// Scope of e: private

} } }

Hint: Use default(none) to be 
forced to think about every 
variable if you do not see

clearly.
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Task Scheduling and
Dependencies



� Default: Tasks are tied to the thread that first executes
them → not neccessarily the creator. Scheduling 
constraints:
�Only the thread to which a task is tied can execute the task
�A task can only be suspended at a task scheduling point

�Task creation, task finish, taskwait , barrier

�If task is not suspended in a barrier, executing thread can only
switch to a direct descendant of all tasks tied to the thread

� Tasks created with the untied clause are never tied
�No scheduling restrictions, e.g. can be suspended at any point
�But: More freedom to the implementation, e.g. load balancing

Tasks in OpenMP: Scheduling



� Problem: Because untied tasks may migrate
between threads at any point, thread-centric
constructs can yield unexpected results

� Remember when using untied tasks:
�Avoid threadprivate variable

�Avoid any use of thread-ids (i.e. omp_get_thread_num() )
�Be careful with critical region and locks

Unsafe use of untied tasks



� If the expression of an if clause on a task
evaluates to false
�The encountering task is suspended
�The new task is executed immediately

�The parent task resumes when new tasks finishes
→ Used for optimization, e.g., avoid creation of small tasks

If clause



� For recursive problems that perform task decompo-
sition, stop task creation at a certain depth exposes 
enough parallelism while reducing overhead.

� Warning: Merging the data environment may have 
side-effects

void foo(bool arg)

{

int i = 3;

#pragma omp task final(arg) firstprivate(i)

i++;

printf(“%d\n”, i);   // will print 3 or 4 depending on expr

}

final clause

C/C++

#pragma omp task final(expr)

Fortran

!$omp task final(expr)



� The taskyield directive specifies that the current
task can be suspended in favor of execution of a 
different task.
�Hint to the runtime for optimization and/or deadlock

prevention

The taskyield directive

C/C++

#pragma omp taskyield

Fortran

!$omp taskyield



#include <omp.h>

void something_useful();
void something_critical();

void foo(omp_lock_t * lock, int n)
{

for(int i = 0; i < n; i++)
#pragma omp task
{

something_useful();
while( !omp_test_lock(lock) ) {

#pragma omp taskyield
}
something_critical();
omp_unset_lock(lock);

}
}

Taskyield example (1/2)



#include <omp.h>

void something_useful();
void something_critical();

void foo(omp_lock_t * lock, int n)
{

for(int i = 0; i < n; i++)
#pragma omp task
{

something_useful();
while( !omp_test_lock(lock) ) {

#pragma omp taskyield
}
something_critical();
omp_unset_lock(lock);

}
}

Taskyield example (2/2)

The waiting task may be
suspended here and allow the
executing thread to perform
other work. This may also
avoid deadlock situations.
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� The transparency and ease of use of OpenMP are a 
mixed blessing
�Makes things pretty easy
�May mask performance bottlenecks

� In an ideal world, an OpenMP application “just runs
well”. Unfortunately, this is not always the case…

� Two of the more obscure things that can negatively 
impact performance are cc-NUMA effects and false 
sharing

� Neither of these are caused by OpenMP
�But they most show up because you used OpenMP
�In any case they are important enough to cover here

OpenMP and performance



� In modern computer design memory is divided into 
different levels:

� Registers

� Caches

� Main Memory

� Access follows the scheme
�Registers whenever possible
�Then the cache
�At last the main memory

Memory hierarchy

Main Memory

Cache

Registers

CPU

5-20 GB/s

50-100 GB/s

CPU Chip

“DRAM Gap”



� If there are multiple caches not shared by all cores in the
system, the system takes care of the cache coherence.

� Example:
int a[some_number]; //shared by all threads

thread 1: a[0] = 23;     thread 2: a[1] = 42;

--- thread + memory synchronization (barrier) ---

thread 1: x = a[1];      thread 2: y = a[0];

�Elements of array a are stored in continuous memory range

�Data is loaded into cache in 64 byte blocks (cache line)
�Both a[0] and a[1] are stored in caches of thread 1 and 2

�After synchronization point all threads need to have the
same view of (shared) main memory

� The system is not able to distinguish between changes
within one individual cache line.

Cache coherence (cc)



� False sharing: Storing data into a shared cache line 
invalidates the other copies of that line!

False sharing

Core

memory

Core

on-chip cache

Core Core

on-chip cacheon-chip cache

bus

a[0 – 4]

1: a[0]+=1;2: a[1]+=1; 3: a[2]+=1;4: a[3]+=1;

• Caches are organized in lines of
typically 64 bytes: integer array 
a[0-4] fits into one cache line.

• Whenever one element of a 
cache line is updated, the whole 
cache line is invalidated.

• Local copies of a cache line have 
to be re-loaded from main 
memory and the computation 
may have to be repeated.



� Be alert, if all of these three conditions are met
�Shared data is modified by multiple processors
�Multiple threads operate on the same cache line(s)
�Update occurs simultaneously and very frequently

� Use local data where possible

� Shared read-only data does not lead to false sharing

False sharing indicators



� Serial code: all array elements are allocated in the 
memory of the NUMA node containing the core 
executing this thread

double* A;

A = (double*)
malloc(N * sizeof(double));

for (int i = 0; i < N; i++) {

A[i] = 0.0;

}

Non-uniform memory

Core

memory

Core

on-chip

cache

Core Core

memory

interconnect

on-chip

cache

on-chip

cache

on-chip

cache

A[0] … A[N]



� First touch w/ parallel code: all array elements are 
allocated in the memory of the NUMA node containing 
the core that executes the
thread that initializes the
respective partition

double* A;

A = (double*)
malloc(N * sizeof(double));

omp_set_num_threads(2);

#pragma omp parallel for

for (int i = 0; i < N; i++) {

A[i] = 0.0;

}

First touch memory placement

Core

memory

Core

on-chip

cache

Core Core

memory

interconnect

on-chip

cache

on-chip

cache

on-chip

cache

A[0] … A[N/2] A[N/2] … A[N]



� Performance of OpenMP-parallel STREAM vector assignment measured 
on 2-socket Intel® Xeon® X5675 („Westmere“) using Intel® Composer 
XE 2013 compiler with different thread binding options:

Serial vs. Parallel initialization
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� Peak Performance is only achievable if everything is 
done right (NUMA, Vectorization, FLOPS, …)!

Roofline m odel
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� All threads have access
to the same, globally
shared memory

� Data in private memory
is only accessible by the
thread that owns this
memory

� No other thread sees
the change(s) in private
memory

� Data transfer is through
shared memory and is
100% transparent to the
application

The OpenMP memory model (1)
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OpenMP and relaxed consistency

• OpenMP supports a relaxed-consistency shared memory 
model.
– Threads can maintain a temporary view of shared memory that is 

not consistent with that of other threads.
– These temporary views are made consistent only at certain points in 

the program. 
– The operation that enforces consistency is called the flush 

operation



� Need to get this right
�Part of the learning curve

� Private data is undefined on entry and exit
�Can use firstprivate and lastprivate to address this

� Each thread has its own temporary view on the data
�Applicable to shared data only
�Means different threads may temporarily not see the same 

value for the same variable ...

� Let me illustrate the problem we have here…

The OpenMP memory model (2)



� If shared variable X is kept within a register, the
modification may not be made visible to the other
thread(s)

The flush directive (1)
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The flush directive (2)

• Example of the flush directive, source taken from “Using 
OpenMP” pipeline code example
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Flush operation

• Defines a sequence point at which a thread is guaranteed to 
see a consistent view of memory
– All previous read/writes by this thread have completed and are visible 

to other threads
– No subsequent read/writes by this thread have occurred
– A flush operation is analogous to a fence in other shared memory 

API’s
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Flush and synchronization

• A flush operation is implied by OpenMP synchronizations, 
e.g.
– at entry/exit of parallel regions
– at implicit and explicit barriers
– at entry/exit of critical regions
– whenever a lock is set or unset
….
(but not at entry to worksharing regions or entry/exit of master 

regions) 
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What is the big deal with flush?

• Compilers routinely reorder instructions implementing a 
program
– This helps better exploit the functional units, keep machine busy, hide 

memory latencies, etc.

• Compiler generally cannot move instructions:
– past a barrier
– past a flush on all variables

• But it can move them past a flush with a list of variables so 
long as those variables are not accessed

• Keeping track of consistency when flushes are used can be 
confusing … especially if “flush(list)” is used.

Note: the flush operation does not actually synchronize different Note: the flush operation does not actually synchronize different Note: the flush operation does not actually synchronize different Note: the flush operation does not actually synchronize different 
threads. It just ensures that a threadthreads. It just ensures that a threadthreads. It just ensures that a threadthreads. It just ensures that a thread’s values are made s values are made s values are made s values are made 
consistent with main memory.consistent with main memory.consistent with main memory.consistent with main memory.



� Strongly recommended: do not use this directive 
with a list
�Could give very subtle interactions with compilers
�If you insist on still doing so, be prepared to face the 

OpenMP language lawyers
�Necessary much less often with the addition of 

sequentially consistent atomics in OpenMP 4.0

� Implied on many constructs
�A good thing
�This is your safety net

� Really, try to avoid at all, if possible!

The flush directive (3)
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Conclusion
• OpenMP is powerful and flexible APIs that gives you the 

control you need to create high-performance applications

• We covered a wide variety of advanced topic exploring the 
effective use of OpenMP 
– Scheduling loop iterations
– Nested Computation
– Arbitrary Tasks
– NUMA Optimizations
– Memory Model

• Next steps?
– OpenMP is in active evolution to target the latest machine 

architectures. 
– Start writing parallel code … you can only learn this stuff by writing 

lots of code.


